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The degree of instability of au equilibrium position in an autonomous dynamical system is defined as 

the number of eigenvalues of its linearization that lie in the right half-plane. Dissipative systems with 

Morse functions that do not increase along their trajectories are considered. The critical points of such 

functions are precisely the equilibrium positions. It will be shown that the degree of instability of a non - 

degenerate equilibrium position has the same parity as the index of the Morse function at that point. In 

particular, if the index is odd, the equilibrium is unstable. This result carries over to compact invariant 

manifolds of a dynamical system, provided they are non-degenerate, reducible and ergodic. An 

example is the problem of the stability of the steady motion of a heavy cylindrical rigid body in an 

unbounded volume of ideal liquid with non-zero circulation. 

1. DEGREE OF INSTABILITY 

LET 2) BE a smooth vector field on an n-dimensional manifold M with local coordinates x = 
(4,. - -, x,,). It generates a dynamical system on M 

x’ = u(x) (1.1) 

We shall assume throughout this paper that x = 0 is an equilibrium position, u(O) = 0. In the 
neighbourhood of this point, then, system (1.1) may be written X’ = AX+ ~$1 x I), where A is the 
Jacobian of 2) at x = 0. 

The degree of instability of the equilibrium x = 0 is defined as the number of eigenvalues of 
A (counting multiplicities) with positive real part. This definition is a natural generalization of 
the definition of the degree of instability for equilibrium positions of reversible mechanical 
systems, proposed by Poincare [l]. In particular, if the degree of instability is odd, then the 
characteristic polynomial of A has a positive real root. 

The degree of instability may also be defined for a reducible compact invariant manifold N 
of system (1.1). Let y be local coordinates on N, and z the coordinates in the transversal 
direction. In these variables N is defined by the equation z= 0, while Eqs (1.1) take the 
following form 

Y’ = NY) + f (Y. z). z’= AZ + g(y,z) 

f(y.0) = 0, g = o(lzl*) (1.2) 

where u is the restriction of the field 2) to N. By our reducibility assumption, the matrix A is 
constant in suitable coordinates y, z. If dimN = 1 (i.e. N is a periodic trajectory), Eqs (1.1) are 
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always reducible (the Floquet-Lyapunov theorem). The degree of instability of N is again 
defined a the number of eigenvalues of A with positive real part; we will denote it by degN. 

It is a rather complicated problem to determine whether invariant manifolds of dimensions 
b 2 are reducible. It has not been completely solved even for a torus (see [2]). 

An invariant manifold N is said to be non-degenerate if I A If 0. The following lemma is easy 
to prove. 

Lemma 1. Let N be a reducible non-degenerate invariant manifold. Then 

degN I x(1-sign]-AI)mod2 (1.3) 

Indeed, since complex eigenvalues occur in pairs, degN is equal modulo 2 to the number of positive 
real roots of the characteristic polynomial (counting multiplicities). Furthermore, the sign of the coeff- 
icient of h” in the characteristic polynomial of A is just the sign of I -A I. It remains to apply Descartes’ 
theorem on the number of positive roots of a polynomial. 

One corollary of this result is as follows. Let us assume that system (1.1) depends on a 
parameter a and has a family of reducible non-degenerate invariant manifolds N, which 
depends smoothly on a. If there is an ct for which N, has odd degree of instability of N,, then 
N, will be unstable for all values of a. 

Existence conditions for invariant manifolds of dimensions z= 2 for smooth perturbations of 
the initial system were studied in [3]. There, however, stringent conditions were imposed on 
the invariant manifold. But if dimN s 1, non-degeneracy guarantees continuability of the 
equilibrium position or periodic solution with respect to a. 

Let us consider equilibrium positions in greater detail. Let y be a smooth regular curve in 
the (n+l)-dimensional space M xR, ( R, being the real axis in a space), which is one of the 
equilibrium curves: if (x., a.) E y, then x = M is an equilibrium of system (1.1) at a = a.. Now 
let 

. ..) hvao), (xk+l,aoh... 

be the points at which y cuts the “plane” a = a,, transversally, as arranged in sequence on y. 

Proposition 1. The difference degx,,, - deg x, is odd for all k . 
This is an analogue of Poincare’s result concerning the law of stability reversal (see [l]). 

Chetayev [4] derived an analogous relationship for the indices of singular points, using the 
well-known Poincare-Kronecker theorem on the sum of indices. Since the index of a non- 
degenerate singular point equals fl, depending on the sign of I Al, Proposition 1 is a corollary 
of Chetayev’s theorem and our Lemma 1. 

2. DISSIPATIVE SYSTEMS 

If a smooth function F: M + R exists such that F’ = (#l&, u) G 0, we shall call the system 
dissipative. The function F plays a role similar to that of the total energy. It has been shown 
[5] that the non-degenerate critical points of F correspond to the equilibrium positions of 
system (1.1). 

Our main result is the following theorem. 

Theorem 1. Let x0 be a non-degenerate equilibrium position of system (1.1) which is a non- 
degenerate critical point of F. Then 

deg x0 = ind, F (mod 2) (2.1) 

The expression on the right of this equality is the index of F at the critical point x0. 
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Corollary. Let F be a Morse function. Then its critical points of odd index are unstable equi- 
libria of system (1.1). 

If F is an integral of (l.l), this statement was proved in [6] (for a simple proof, see [7]). If n is 
even, the condition F’ G 0 may be replaced by F’ > 0. 

This corollary is a natural generalization of the Kelvin-Chetayev theorem according to 
which the equilibrium of a mechanical system with odd Poincare degree of instability is 
unstable when arbitrary gyroscopic and dissipative forces are added. Indeed, let F be an energy 
integral of a reversible system. Its index in an equilibrium position is obviously odd, and this 
situation is maintained on adding the gyroscopic forces. Since, after adding the dissipative 
forces F’ < 0, the instability of the equilibrium follows from the corollary. 

Proof of Theorem 1. Put Q = -F and let x = 0 be a non-degenerate critical point of @. In its 
neighbourhood, Q, = Q(O) + (Bx, X) / 2 + o( I x I’). Since @ >O, the quadratic form (x, BAx) is 
non-negative. Put D= (BA+ATB)12. Consequently, the symmetric matrix D is also non- 
negative. Since by assumption A and B are non-singular matrices, it follows that I C k 0. Since 
(C + CT)/2 = D, it follows that C = D+ J, where J is skew-symmetric. 

The following algebraic lemma holds. 

Lemma 2. If Da 0, then I D+J I> 0 for any skew-symmetric matrix J. 
For simplicity, we will consider the case n =3. A non-singular matrix K exists such that 

KTDK is diagonal. Since I KKT I> 0, the sign of the determinant 

IK’DK+K~JKI = IK~KIID+JI 

will be the same as that of I D+ J I. Since KTJK is skew-symmetric, we may assume that D has 
already been reduced to diagonal form. Next 

h ab 

-a p c = Q.~v+hc~+pb~+va* % 0 

-b -c v 

if the numbers h, p and v are non-negative, which is what was required. 
Thus, by Lemma 2, IC I> 0. Hence sign I-A I-B> 0. Clearly, sign I -BI= (-l)‘“@. Cons- 

equently, by Lemma 1, deg(0) = X[1-(-l)‘“dF]mod2. If F has an even index, then deg(0) = 
O(mod2), but if the index is odd, then deg(0) = l(mod2). This completes the proof of the 
theorem. 

3. SOME GENERALIZATIONS 

Let N be a connected compact reducible m-dimensional invariant manifold of a dynamical 
system (1.1) whose restriction to N has an invariant measure with density p > 0. In the neigh- 
bourhood of N Eqs (1.1) have the form (1.2). The restriction of system (1.1) to N is defined by 
the equation 

Y ’ = u(y), YEN (3.1) 

Let 

F(Y,Z) = F,(y) +(z,h(y)) + @(Y)Z, z)/2 +a.. 

be a smooth function defined in the neighbourhood of N, with F’ ~0. Clearly, F0 is a smooth 
function on N and its derivative along trajectories of system (3.1) is non-positive. 
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Lemma 3. If system (3.1) is ergodic, then F, = const. 

The simplest example of an ergodic system is conditionally-periodic motion on an m-dimensional torus 
N=Tm=dyl,..., y,,,mod2rr] 

Yi = al*,..., Y, = 0,; Oj=cOnst (3.2) 

In the typical case of incommensurable frequencies w,, . . . , CO,, the system is ergodic. In particular, this 
relates to periodic trajectories (m = 1). 

Proof of Lemma 3. Put Fl = 0 c 0. Then 

Since F0 is continuous on the compact set N, it is bounded. Consequently, the limit of the left-hand side 
of (3.3) as T + m is zero. On the other hand, by Birkhoff’s ergodic theorem [8], the limit of the right-hand 
side of (3.3) is 

--& I p@drny, mesN = ] pd”y 
N N 

Since p > 0, @CO and this integral vanishes, we obtain @=O. Consequently, F, is an integral of 
system (3.1). By ergodicity, F, = const. This proves the lemma. 

The terms that are linear in z in the expression for F’ may be written 

(AAh) + (z,h’) (3.4) 

where h’ is the derivative of the covector field h along trajectories of system (3.1). Since 
F’ G 0, the sum (3.4) must vanish. Hence 

(ahPy,u) = -A’h (3.5) 

An invariant manifold N is said to be strongly non-degenerate if the only solution of Eq. (3.5) 
is zero. Strong non-degeneracy implies ordinary non-degeneracy of N as defined in Sec. 1 
(otherwise Eq. (3.5) would have a non-trivial solution h = const). For the invariant manifold 
(3.2), strong degeneracy means that A has no eigenvalues of the form i(k,o, +. . .+ k,,,o,), 
kj E Z. For periodic trajectories (m = 1) it is equivalent to the condition that the multipliers be 
different from unity. 

Thus, under our assumptions the Taylor series of F around N begins with a quadratic form 
in z. We average this form over the invariant manifold N 

fw) = ; 1 mY)Lz)P(Y)~"Y (3 -6) 

Theorem 2. Suppose that the connected compact invariant manifold N is reducible, ergodic 
and strongly non-degenerate. If the quadratic form (3.6) is non-degenerate, then degN = 
inda(mod2). 

Corollary. Under the assumptions of Theorem 2, if the form CD has odd index, then N is 
unstable. 

This proposition may be considered a partial inversion of a theorem on the stability of 
invariant manifolds established in [5]. If F is an integral of system (1.1) instability was proved 
in [7]. The proof of Theorem 2 is exactly the same as that of Theorem 1, using the scheme 
suggested in [7]. 
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4. SOME APPLICATIONS 

As an example, let us consider a two-dimensional problem in hydrodynamics: a heavy 
cylindrical solid falling in an unbounded volume of an ideal fluid in which there is a plane- 
parallel irrotational flow at rest at infinity, It is assumed that the generators of the cylinder are 
orthogonal to the flow plane. By Thomson’s theorem, the circulation I’ of the fluid about the 
cylinder is constant. 

In a suitable frame of reference Ogqc attached to the body (with the 0 c axis orthogonal to 
the flow plane), the kinetic energy of the “body plus fluid” system may be written in the form 

(a,~* + a2u2 + b (pS2) I2 

where u and ‘u are the projections of the velocity of the point 0 on to the 06 and &t axes, and 
4 is the angle of rotation of the body. The coefficients a, and a, include the added masses and 
added moment of inertia. 

The equations of motion of the body in the fluid may be put in the form of Kirchhoff’s 
equations [9, Sec. 134a] 

a,u’+a2ucp‘+hu = -pcoscp, 02u’-a,utp’-hu = -psinq 

bcp”+(a, -a,)uu = p($sinq,-qcosrp) (4.1) 

where h = pI’, p is the fluid density and p is the weight of the body minus the Archimedes 
force; for a two-dimensional homogeneous body 4 and q are the Cartesian coordinates of its 
centre of mass. We shall assume that a, > a, and h f 0. 

Steady motions of this body and their stability were studied in ]lO]. The positions of equili- 
brium of system (4.1) are defined by the equations 

hu = psinIrp, hu = -pcoscp, tp=cp* (4.2) 

where cp. is the root of the equation 

S(Q) = aSiIlQ+fkOSQ+SinQCOSQ = 0 

Equations (4.1) have an integral 

2 
F +Q fcoSQ + ;Q+2 + 

where G is the primitive of g. If Q = Q, is a strict local minimum of G, the steady motion (4.2) is 
stable by Lyapunov’s theorem. But if G has a local maximum there, the equilibrium (4.2) will 
be non-degenerate and the index of Fat the point will be unity, Consequently, by Theorem 1, 
the equilibrium (4.2) will be unstable. Note that F is not the total mechanical energy of the 
system. 

The non-degenerate minima and maxima of G alternate. Hence it follows that values of Q 
corresponding to stable and unstable motions also alternate. This phenomenon, already 
pointed out in ]lO], is a special case of the stability reversal law established by Proposition 1. 

On the right-hand side of the third equation of system (4.1) one can add a dissipative term 
-_cLQ*, where u is a positive coefficient, which may depend on the position of the solid body. 
This does not affect the steady solutions (4.2). Since F SO, the above stability conclusions 
remain valid. 

The work reported here was financed by the Russian Fund of Fundamental Research (93- 
013-16244). 
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